Border Image

Wissenschaftliche Belege und klinische Untersuchungen

Das große Potenzial der Cardisiographie liegt in der frühzeitigen Erkennung von Herzkrankheiten bei Menschen, die noch vollständig symptomfrei sind und deren Gesundheitszustand keinen Anlass für eine Bestimmung des Durchblutungsstatus zulässt. Die Studien zeigen Ergebnisse auf, die den eindeutigen Nutzen der Methode zur Früherkennung einer Minderdurchblutung des Herzmuskels belegen.

Eine umfassende Zusammenstellung zum wissenschaftlichen Hintergrund und unseren Studienergebnissen finden Sie hier:

Studienlage CSG

Cardisio Studienübersicht

Cardisio Peer-Review-Studie

Frankfurt, 16. Januar 2020: In der aktuellen Ausgabe veröffentlicht die renommierte Fachzeitschrift “Journal of Electrocardiology” eine Peer-Review-Studie, in der die beeindruckende Präzision der Cardisiographie im Screening Koronarer Herzkrankheiten belegt wird. Der Artikel liefert Ergebnisse zur Sensitivität und Spezifität der Cardisiographie: Die Sensitivität liegt bei den männlichen Probanden bei 97%, bei den weiblichen bei 90%, d.h. 97% der erkrankten Männer werden als erkrankt erkannt und 90% der Frauen. Bei der Spezifität liegen die Frauen, die an der Studie teilnahmen, mit 76% vor den Männern mit 74%, d.h. 76% der gesunden Frauen werden als gesund erkannt und 74% der Männer. Die Cardisiographie ist das erste Verfahren, mit dessen Hilfe nicht-invasiv, schnell und günstig das Risiko einer Koronaren Herzerkrankung (KHK) bei symptomfreien Menschen ermittelt werden kann.

Journal herunterladen

Cardisio Validierungsstudie Sana-Herzzentrum Cottbus

Frankfurt, 10. März 2020: Zum zweiten Mal innerhalb kurzer Zeit gelangt eine klinische Studie zu dem Ergebnis, dass die Cardisiographie bei der Erkennung Koronarer Herzkrankheiten (KHK) vergleichbar gute Ergebnisse erzielt wie der aktuelle Goldstandard, die Koronarangiographie.

Das Team rund um Dr. Temirlan Erkenov von der Abteilung für Herzchirurgie des SANA Herzzentrums in Cottbus, Deutschland, kam zu dem Schluss, dass: „…die Cardisiographie eine einfache, präzise und hochvalide Methode ist, die sich als nicht-invasive diagnostische Modalität für die Erstbeurteilung stabiler KHK im klinischen Setting eignet…“ (Cardisiography as a novel non-invasive diagnostic tool for the detection of coronary artery disease at rest – a first prospective study of diagnostic accuracy; Temirlan Erkenov, Tomasz Stankowski, Oliver Grimmig, Sören Just, Prof. Oleg Remizov, Prof. Dirk Fritsche)

In die Studie flossen Daten von 106 Patienten ein, bei denen eine Koronarangiographie angezeigt war und auch durchgeführt wurde. Anschließend wurde die Cardisiographie durchgeführt, deren Ergebnis blind mit dem der Koronarangiographie korreliert wurde. Das Ergebnis: Bei insgesamt 86 der 106 Patienten wurde eine Gefäßerkrankung mittels Koronarangiographie bestätigt. Die Cardisiographie identifizierte 82 der 86 Fälle (95,4 Prozent), während in der konventionellen Echocardiographie lediglich 12 Fälle erkannt wurden. Daraus ergibt sich für die Cardisiographie eine Sensitivität von 95,4 Prozent, eine Spezifität von 90 Prozent und ein positiver Voraussagewert von 97,6 Prozent für die KHK.

„In westlichen Ländern ist die Koronare Herzkrankheit eine der häufigsten Todesursachen und ein häufiger Grund für körperliche Behinderungen. Der Grund für den schweren Verlauf ist die Tatsache, dass die initiale Manifestation der Erkrankung ein Herzinfarkt oder der plötzliche Herztod sein kann. Die Cardisiographie ist eine neue, einfach zu handhabende und Untersucher unabhängige Technologie, welche die Vektorcardiographie mit den modernen Analysemöglichkeiten der Künstlichen Intelligenz nutzt“, erklären die Autoren den Grund für die Durchführung der Studie – und für deren überzeugenden Verlauf.

Abstract herunterladen

Studie Herzzentrum Bad Oeynhausen: Vergleich der Cardisiographie (CSG) mit der Myokard-SPECT bei Verdacht auf KHK und bekannter KHK

Studie am Herz- und Diabeteszentrum Nordrhein-Westfalen in Bad Oeynhausen bestätigt diagnostische Relevanz der Cardisiographie

Vergleich der Cardisiographie (CSG) mit der Myokard-SPECT bei Verdacht auf KHK und bekannter KHK:

  • Die Cardisiographie (CSG) zeigt in der KHK Vorfelddiagnostik einen signifikanten Zusammenhang mit der MPS
  • Eine normale CSG korreliert mit einer normalen bis gering pathologischer MPS, entsprechend hoher negativer prädiktiver Wert von 98 %
  • Die CSG eignet sich als Präselektions-Tool für hausärztliche oder kardiologische Praxen für Entscheidung zur nicht-invasiven Bildgebung bei Patienten mit Verdacht auf KHK

Download Übersicht

Kongress der European Society of Cardiology 2023 – HDZ-NRW / Mediacc: Vergleich Cardisiographie mit CVRF-Score zur nicht-invasiven Beurteilung einer KHK

Zusammenfassung und Interpretation:

Verglichen wurde der CSG-Index (Parameter der CSG) mit dem CVRF-Score in Bezug auf die Vorhersagekraft auf das Vorhandensein einer KHK

  • Modified PROCAM-Score (CVRF-Score)
    • Klassischer Risiko-Score zur Ermittlung der Vortestwahrscheinlichkeit einer koronaren Herzerkrankung
  • Aktuelle Analyse:
    • 407 Patienten
      • 225 Patienten HDZ, Bad Oeynhausen
      • 182 Patienten einer hausärztlichen Praxis, Berlin

Ergebnis

The CSG Index differentiated those with no signs and symptoms of CHD and patients with CHD and is a better predictor for cardiovascular risk than the classical risk factors”

  • Zur nicht-invasiven Beurteilung einer KHK ist die CSG dem CVRF-Score überlegen
  • CSG-Index korreliert signifikant (p < 0,001) mit klinisch bestätigtem KHK-Status
  • NPV (negativer prädiktiver Wert) der CSG lag bei 91%

Zur Studie

Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. Herztage 2023 – Sensitivity and Specificity of the Artificial Intelligence-Based 5-Lead 3D Vectorcardiography in Patients With Suspected or Confirmed Coronary Heart Disease

Originally presented at the DGK Herztage 2023. Published in the American Heart Association Circulation. 2023;148:A15181

Purpose of the study  

  • Validate Artificial Intelligence-based 5-lead 3D-vectorcardiography (5L3DVCG-AI) 
  • Use additional information of 5L3DVCG-AI over standard 12-lead electrocardiography (ECG) in the detection of coronary vascular disease (CVD) at rest  
  • Basis for investigation of 5L3DVCG-AI as a new screening tool for CVD in ongoing prospective multinational trials 

Conclusion
These data extend the previous findings of 5L3DVCG-AI identifying CVD patients with cardiac ischaemia from those without to now differentiating healthy controls from CVD and those with higher risk for CVD. 5L3DVCG-AI may thus be a further scalable screening method to identify patients at risk for CVD in need for risk modification or further diagnostic procedures.
5L3DVCG-AI-derived ECG showed high correlation and low bias compared to standard 12-lead ECG. The ongoing prospective large-scale performance clinical trials will have to confirm these preliminary data to verify the diagnostic accuracy. 

Zur Studie

Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. Herztage 2023 – 5-lead 3D-vectorcardiography differentiates between high and low cardiovascular risk profiles in patients with suspected or known coronary heart disease

Purpose of the study 

  • Validate Artificial Intelligence-based 5-lead 3D-vectorcardiography (5L3DVCG-AI)  
  • use additional information of 5L3DVCG-AI over standard 12-lead electrocardiography (ECG) in the detection of coronary vascular disease (CVD) at rest  
  • basis for investigation of 5L3DVCG-AI as a new screening tool for CVD in ongoing prospective multinational trials 

Conclusion

  • Data extend the previous findings of 5L3DVCG-AI identifying CVD patients with cardiac ischaemia 
  • Now differentiating healthy controls from CVD and those with higher risk for CVD 
  • Confirmation of results in female population 
  • Validation of ECG-reconstruction via heart axis 
  • CSG-Index is superior to CVRF-Score in identification of CVD  
  • The ongoing prospective large-scale performance clinical trials will have to confirm these preliminary data to verify the diagnostic accuracy. 

Zur Studie

American Heart Association Scientific Sessions 2023 – Validation of the Artificial Intelligence Based 5 Lead 3D Vectorcardiography in Comparison to the 12 Lead ECG in a Mixed Population

Originally presented at the AHA 23 (American Heart Association Scientific Sessions 2023) and published in the American Heart Association Circulation. 2023;148:A16473.


Purpose of the study  

  • Validate Artificial Intelligence based 5 lead 3D vectorcardiography (5 L 3 DVCG AI)  
  • Use additional information of 5 L 3 DVCG AI over standard 12 lead electrocardiography (ECG) in the detection of cardiac pathology at rest.  
  • Basis for investigation of 5 L 3 DVCG AI as a new screening tool for cardiac pathology in ongoing prospective multinational trials

Conclusion 

  • 5 L 3 DVCG AI derived ECG showed high correlation and low bias compared to standard 12 lead ECG 
  • Easy to use 5 lead ECG may replace 12 lead ECG without major training or expertise  
  • Shorter intervals to be considered when interpreting 5 L 12 L ECG and “normal” values in the ongoing prospective large scale performance clinical trials  
  • 5 L 3 DVCG AI identifies persons at risk for CVD (s abstract 15181 PSu 3119) 

Zur Studie

Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. - 90. DGK-Jahrestagung 2024 – 5L3DVCG-AI for identification of cardiac pathology in a mixed population

Originally presented at the 90. DGK-Jahrestagung 2024.

Purpose of the study

  • Artificial Intelligence (AI) and access to a large global clinical data repository have the potential to boost the performance of Vectorcardiography (VCG) beyond conventional techniques.
  • Quantifying cardiovascular risk (CVR) according to SCORE2, QRISK3 or ASCVD is not always feasible, especially in hard to reach populations.
  • The modified PROCAM-Score (CVRF-Score) is a validated alternative.

Conclusion

  • AI further improves the easy-to-use and inexpensive 5L3DVCG
  • 5L3DVCG-AI identifies asymptomatic females at high risk for CVD
  • CSG-Index differentiated between no signs and symptoms of CVD and patients with cardiac pathology or CVD
  • 5L3DVCG-AI identifies patients at risk for CVD and cardiac pathology
  • 5L3DVCG-AI opens up a diagnostic window for early detection of CVD
  • CSG is superior to CVRF-Score in differentiating people at risk of CVD or cardiopathology, especially for women and hard-to-reach population

Zur Studie

National Health Service (NHS), SBRI Healthcare: Assessing the impact of using community-based heart testing in primary care to detect early signs of cardiovascular disease through a novel, quick, low- cost test which uses sophisticated AI-based analysis.

The SBRI study (SBRIH21P3013) investigated how the Cardisiography could be incorporated into the NHS, focusing on its application within Primary Care to enhance early detection of cardiovascular issues and improve the efficiency of patient referrals to Secondary Care.

SBRI Healthcare is a UK government initiative aimed at promoting innovation in healthcare. It works closely with NHS partners to identify unmet clinical needs and provide support for developing solutions that enhance patient outcomes and healthcare efficiency.

Cardisiography (CSG), a non-invasive, AI-based diagnostic tool, is designed to be a faster and more cost- effective method for identifying heart conditions compared to traditional methods. Through the study, the goal was to assess its impact in routine NHS clinical settings and determine its effectiveness in improving patient referrals to more specialized care when necessary.

Zur Studie

Background:

Cardiovascular disease (CVD) is a leading cause of mortality worldwide, making early and accurate diagnosis essential for improving patient outcomes. Traditional diagnostic tools, like ECGs, are often inadequate in primary care settings, leading to inaccurate and unnecessary referrals to secondary care.

Objective:

This pilot-study, conducted by SBRI Healthcare, aimed to evaluate the feasibility, diagnostic accuracy, care pathway effects, and clinical utility of the Cardisio test—a vectorcardiography-based tool—for early detection of CVD in primary care settings.

Methods:

Participants: 628 asymptomatic, elevated-risk individuals were recruited from three primary care settings in the West Midlands, UK.
Settings: GP practice, in-pharmacy setting, and outreach pharmacy.
Procedure: The Cardisiography test was administered by trained non-clinical staff.
Analysis: Test outcomes were compared with standard care to assess diagnostic accuracy, and the impact on secondary care referrals was analyzed.

Results:

  • High Diagnostic Accuracy: The Cardisio test demonstrated:
    • Sensitivity of 73.8%
    • Specificity of 94.4%
    • Positive Predictive Value (PPV) of 80%
    • Negative Predictive Value (NPV) of 90.4%
  • Strong Correlation with Clinical Decisions: A strong correlation was found between Cardisio results and clinical decisions for secondary care referrals (p<0.001).
  • Positive Patient Feedback: Participants reported high satisfaction, with a Net Promoter Score of 88%.
  • Ease of Use: Non-clinical staff were effectively trained to administer the test, confirming its scalability and feasibility for widespread use in non-clinical settings such as pharmacies.
  • Remote and Community Testing: The Cardisio test enables community-based testing in pharmacies and outreach settings, improving access to heart disease screening and reducing health inequalities in underserved populations.
  • ESG Results: The testing method through local GP surgeries and pharmacies showed a promising 60.7% CO2e reduction, a balanced gender ratio of 49:51, and included diverse ethnic minorities (67.8%). These results align with NHS sustainability goals.

Conclusion:

The Cardisio test is a highly accurate, cost-effective, and user-friendly tool for early detection of CVD in primary care. Its strong PPV and NPV values, ability to reduce unnecessary secondary care referrals, opportunities for remote and community testing, and positive environmental and social outcomes make it an ideal tool for early diagnosis and decision-making in healthcare settings.

About SBRI

The Small Business Research Initiative (SBRI) Healthcare is a national award-winning programme in the UK. It accelerates innovative technologies in the NHS and the wider health and social care system, addressing unmet health and care needs.
SBRI Healthcare provides funding and support to early-stage projects enabling testing for business feasibility and technology development, as well as for more mature products through support for real- world implementation studies

SBRI Healthcare, an Accelerated Access Collaborative initiative in partnership with the Academic Health Science Networks (AHSNs), has awarded £3.3 million to eight late-stage innovations that help detect, prevent, and manage cardiovascular disease (CVD).

You can read more about SBRI, and the healthcare grant awarded to Cardisio here:

https://sbrihealthcare.co.uk/news/the-accelerated-access-collaborative-through-sbri-healthcare-awards- 3-3-million-to-accelerate-cardiovascular-disease-innovations

Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. - DGK Herztage 2024 – AI-based 5-lead 3D-vectorcardiography (5L3DVCG-AI) detecting cardiac pathologies at rest may replace conventional 12-lead ECG with potential additional value

Originally presented at the DGK-Herztage 2024. https://doi.org/10.1007/s00392-024-02526-y

Introduction:
Artificial Intelligence-based 5-lead 3D-vectorcardiography (5L3DVCG-AI) is easy to use, quantifies the individual risk for cardiac pathologies in need for further diagnostic procedures and may, with good results in women, facilitate and align the cardiological diagnostic pathway for coronary heart disease.

Methods:
In this multicentre retro- and prospective study, recordings from 5L3DVCG-AI were externally validated against automated 12-lead ECG in 287 patients with and without cardiac pathologies. 5L3DVCG-AI derived 12-lead ECG (VCG-ECG) was reconstructed from 5L3DVCG-AI with an algorithm (hgh-1.1.23) and time intervals were derived from 5L3DVCG-AI. Two independent specialist cardiologists masked for 12-lead ECG results interpreted VCG-ECG qualitatively and quantitatively. The following variables were compared between 5L3DVCG-AI and 12-lead ECG: electric heart axis and rhythm, HR, and time intervals for P, PQ, QT, QTcB. Presence of cardiac pathology (CP) was categorised as exclusion of any CP (control), mild CP or overt CP by 2 independent cardiologists from clinical practice with a follow-up period of 16.2 ± 7.5 months. Diagnostic accuracy was assessed for ECG findings and abnormalities. Correlation between VCG-ECG and 12-lead ECG was calculated for electric heart axis (Spearman’s rank correlation coefficient). Agreement was tested with Bland-Altman analyses. The modified PROCAM-score was used for cardiovascular risk factor (CVRF) assessment.

Results:
Of 287 patients (m:w 62:38%, 55.9 ± 16.1 years) of mixed ethnicity and moderate CVRF (2.1 ± 1.2), 70% were controls, 21% had mild CP and 9% overt CP. Strong correlations were seen for HR and electric heart axis  (r=0.97 and r=0.71, p<0.001 respectively) with 12-lead ECG which was visually confirmed. Quantification of ECG variables such as times for P, PQ, QT, QTcB showed strong correlations (all p<0.001), low systematic bias (SB; -0.9 to -3.9%) and narrow 95% upper and lower limits of agreement (uLoA; 5.6 to 17.3%, lLoA; -8.5 to 19.1%). In women, 5L3DVCG-AI at rest is strong in detecting CVR (r=0.71, p<0.001, mod. PROCAM-Score) and in differentiating cardiac pathologies (β=0.24, T=2.64, p<0.05, corrected for CVR). ECG abnormalities (AF, delayed R-progression, cardiac ischaemias, LVOT VES, sinus bradycardia, sinus tachycardia, AT, LAHB, LHH) were visually detected from 12-lead ECG and VCG-ECG with a sensitivity of 75% and specificity of 100% with low interrater variability. All clinically relevant ECG pathologies were displayed in both systems. The VCG-ECG had only small differences regarding the amplitude of the QRS-complex in three cases.

Conclusion:
In summary, 5L3DVCG-AI is an easy-to-use and feasible technology with good accuracy and reproducibility for electric heart axis, ECG-parameters and intervals and thus offers additional value in detecting individuals with cardiac pathologies or cardiac risks. 5L3DVCG-AI may replace conventional 12-lead ECG in the General Practice or cardiological outpatient departments. Especially for women this may offer additional value.

Zur Studie

Ergänzende Studien und Literatur zu unserer Technologie

Artificial intelligence-supervised vectorcardiography for the diagnosis of a young adult with abnormal origin of the right coronary artery from aorta

Özyüksel A, Salatzki J, and Steen H (2024). Artificial intelligence- supervised vectorcardiography for the diagnosis of a young adult with abnormal origin of the right coronary artery from aorta. Cardiology in the Young, page 1 of 3.

Read article

The Poynting vector: power and energy in electromagnetic fields

Carpenter KH. The Poynting vector: power and energy in electromagnetic fields. Departement of Electrical and Computer Engineering. Kansas State University (2004)

Link

Spatial vector electrocardiography; the clinical characteristics of S-T and T vectors

Grant RP, Estes EH Jr, Doyle JT. Spatial vector electrocardiography; the clinical characteristics of S-T and T vectors. Circulation. 1951 Feb;3(2):182-97.

Link

Cardiogoniometry: a new noninvasive method for detection of ischemic heart disease

Saner H, Baur HR, Sanz E, Gurtner HP. Cardiogoniometry: a new noninvasive method for detection of ischemic heart disease. Clin Cardiol. 1983 May;6(5):207-10.

Link

Kardiogoniometrie: eine elektrokardiografische, nichtinvasive und belastungsfreie Methode zur Erkennung der kardialen Ischämie

Sanz, Ee. Schüpbach, M. Kardiogoniometrie: eine elektrokardiografische, nichtinvasive und belastungsfreie Methode zur Erkennung der kardialen Ischämie. GMS Medizinische Informatik, Biometrie und Epidemiologie. 5 (2009).

Link

Applicability of cardiogoniometry as a non-invasive screening tool for the detection of graft vasculopathy in heart transplant recipients

Spiliopoulos S, Hergesell V, Fischer D, Dapunt O, Krueger U, Koerfer R, Tenderich G. Applicability of cardiogoniometry as a non-invasive screening tool for the detection of graft vasculopathy in heart transplant recipients. Interact Cardiovasc Thorac Surg. 2016 Dec;23(6):976-978.

Link

Computeranalyse des korrigierten, orthogonalen Kardiogramms

von Mengden, H.J., Brodda, K. Computeranalyse des korrigierten, orthogonalen Kardiogramms. Archiv für Kreislaufforschung 67, 123–141 (1972).

Link

Assessment of the Spatial QRS-T Angle by Vectorcardiography: Current Data and Perspectives

Voulgari C, Tentolouris N. Assessment of the Spatial QRS-T Angle by Vectorcardiography: Current Data and Perspectives. Curr Cardiol Rev. 2009 Nov;5(4):251-62. doi: 10.2174/157340309789317850. Erratum in: Curr Cardiol Rev. 2010 Nov;6(4):373.

Link

Improved evaluation of left ventricular hypertrophy using the spatial QRS-T angle by electrocardiography

Maanja, M., Schlegel, T.T., Kozor, R. et al. Improved evaluation of left ventricular hypertrophy using the spatial QRS-T angle by electrocardiography. Sci Rep 12, 15106 (2022).

Link