

5-lead 3D-vectorcardiography differentiates between high and low cardiovascular risk profiles in patients with suspected or known coronary heart disease

Caroline Schmidt-Lucke¹, Simon Kohl¹, Annett Kammeier², Hermann Knobl², Wolfgang Burchert², J. A. Schmidt-Lucke³, Betty Lischke¹, Oliver Lindner²

¹MEDIACC, Medico-Academic Consultings, Berlin; ²Institute of Radiology, Nuclear Medicine and Molecular Imaging, HDZ-NRW; ³Internal medicine practice, Berlin

Purpose of the study

Purpose of the study

-Validate Artificial Intelligence-based 5-lead 3D-vectorcardiography (5L3DVCG-AI)

-use additional information of 5L3DVCG-AI over standard 12-lead electrocardiography (ECG) in the detection of coronary vascular disease (CVD) at rest

-basis for investigation of 5L3DVCG-AI as a new screening tool for CVD in ongoing prospective multinational trials

Hypothesis

Patients with mild to overt signs and / or history of CVD, as diagnosed according to current guidelines and SPECT can be detected with 5L3DVCG-AI - with a special focus on female patients.

Methods

Inclusion criteria: Clinical indication for further diagnostics to confirm or exclude CVD in two centres

Predefined primary endpoint: Suitability of 5L3DVCG-AI in predicting clinical relevant CVD

Design: multicentric, retrospective design with prespecified primary endpoint -Intra-day comparison of heart axis of 12-lead ECG (Top D/BTMedset) and 5L3DVCG-AI -derived ECG (Spearman correlation coefficient)

-5L3DVCG-AI with calculation of CSG-Index (including 731 parameters, e.g., QRS-T angle and in-house features calculated in time and frequency domains, such as beat moments)

-Patient classification as high or low CVD risk, based on CSG-Index [-1 to 1] (CSG-Index cut-off: -0.27)

-Quantification of CVRF-Score as number of risk factors according to mod. PROCAM-Score 1, 2

-Confirmation of CVD was performed according to the practitioners' discretion blinded to the CSG-Index and ischaemia by SPECT

-Definition of clinical status of CVD: control (exclusion of any signs or symptoms of CVD), minimal subclinical findings of CVD, overt clinical signs and / or symptoms of CVD

input.

(A) Positioning of the electrodes in a geometrically predefined position. (B) Extract of characteristic parameters

recorded by 5L3DVCG-AI. (C) Neural

network architecture: Ensemble of five feedforward neural networks.

References: 1 Schmidt-Lucke, Circulation, 2005, 2 Assmann, Circulation, 2001

Results

Domographic Data

Bennographic Bata				
Patient characteristic				

	Total population	149		
n	407			
Gender [m:f]	258:149	-		
Age [years]	63 ± 14	62 ± 14		
Control	215 (60%)	106 (71%)		
Mild:overt CVD	83:58 (23%:16%)	40:3 (27%:2%)		
No. of CVRF ^{1,2} [CVRF-Score; 0 - 7]	3.1 ± 1.4	2.6 ± 1.4		
Smoking	32%	26%		
Diabetes	19%	16%		
Hypertension	65%	62% 52%		
HLP	55%			
Family history	21%	23%		

conduction disturbances (AF, PM, BBB), 15% had consecutive PCI or CABG

Intra-day comparison of heart axis in supine position (12-lead ECG) and sitting position (5L3DVCG-AI)

		ECG (supine)							
ing)		LAD (< -30°)	LT (-30° - 30°)	IT (30° – 60°)	ST (60° - 90°)	SagT	RT (90° -120°)	RAD (>120°)	Σ
sitt	LAD	2	11	4	5	5	1		28
S N	LT	2	40	4	1				47
5	IT	1	32	44	17	3	1		98
ŭ	ST	1	14	14	23	1		1	54
0	SagT								
213	RT		3	1	1		1		6
47	RAD								
	Σ	6	100	67	47	9	3	1	233
LAD: left axis deviation. RAD: right axis de						deviation			

Correlation (Spearman) of heart axis ECG vs. 5L3DVCG-AI: r=0.53, p<0.001

Correlation of CVRF-Score, CSG-Index and clinical status of CVD in the female subpopulation

Interdependency of CVRF-score, CSG-Index and clinical status of CVD

variable	r ²	significance	
CSG-Index vs. CVRF-Score	0.26	< 0.001	
CSG-Index vs. clinical status CHD	0.71	< 0.001	
CVRF-Score vs. clinical status CHD	0.18	< 0.001	

CSG-Index correlates stronger with cardiovascular risk (r²=0.71, p<0.001) compared to CVRF-Score (r²=0.18, p<0.001).

Variables influencing clinical status of CVD

variable	β	т	significance	
CSG-Index	0.24	3.34	0.001	
CVRF-Score	0.19	2.57	0.011	

CSG-Index is better predictor for cardiovascular risk than CVRF-Score. CSG-Index differentiated between suspected CVD with or without consequent PCI or CABG (Chi² = 4.02, p<0.05).

Conclusion

- Data extend the previous findings of 5L3DVCG-AI identifying CVD patients with cardiac ischaemia

- Now differentiating healthy controls from CVD and those with higher risk for CVD

- Confirmation of results in female population

Validation of ECG-reconstruction via heart axis

- CSG-Index is superior to CVRF-Score in identification of CVD

The ongoing prospective large-scale performance clinical trials will have to confirm these preliminary data to verify the diagnostic accuracy.