Caroline Schmidt-Lucke ${ }^{1}$, Betty Lischke ${ }^{1}$, Eugenia Weber², Daniel Günther ${ }^{2}$, Anne Schomöller¹, J. A. Schmidt-Lucke ${ }^{3}$
${ }^{1}$ MEDIACC, Medico-Academic Consultings, Berlin; ${ }^{2}$ cardisio GmbH, Frankfurt, ${ }^{3}$ Internal medicine practice, Berlin

Methods

Design:
Monocentric, retrospective design
Comparison of parameters and heart axis of 12-lead ECG (Top D/BTMedset)
and 5L3DVCG-AI-derived ECG (Pearson correlation coefficients)
5L3DVCG-AI-Reconstruction of "12-lead ECG"
5L12L-ECG, modified Dower transformation)
Use of II and V2 in both methods
Predefined primary endpoint:

- Suclusion criteria:
$\frac{\text { Inclusion criteria: }}{\text { - Patients } \geq 18 \text { y }}$
- Clinical indication for further diagnostics to confirm or exclude cardiac pathology - ECG and CSG performed within <28 days
- Absence of atrial fibrillation (AF)

Definition of 5L3DVCG-Al-Outcomes						
FActors				Components		OUTPuTS
P-Factor indicates reduced perfusion of heart at rest, caused, e.g., by CAD or microvascular dysfunction.				Combination of trained CSG-Index (Al) and relevant VCG-parameters		$\begin{array}{\|l} \hline \text { CSG-Index (AI) \& } \\ \text { VCG-parameters } \end{array}$
S-Factor indicates structural changes in myocardium, e.g enlargement of heart, thickening of myocardium or vitia, myo- and pericarditis.				Combination of trained CSG-Index (AI) and relevant ECG- and VCG-norm deviations, NOT related to ischaemia		CSG-Index (AI) ECG- \& VCGnorm deviation
A-Factor indicates presence of arrhythmia and other abnormalities, e.g. extrasystoles, atrial fibrillation, atrial flutter, conduction disturbances, tachycardia, bradycardia				Combination of trained Al -based algorithm and relevant ECGparameters		ECG-parameters
Results						
Patient Characteristics						
Patient characteristic				Total population		
n				244		
Gender [m:f]				147:97		
Age [years]				55.3土16.8		
Body Mass Index [kg m²]				26.145.4		
Ethnicity				A:4\%,AF:1\%,C:93\%,T:2\%*		
No. of CVRF ${ }^{\text {3 }}$ [VVRF-Score; 0-7]				${ }^{2+1}$		
Smoking				16.4\%		
Diabetes				8.2\%		
Hypertension				38.1\%		
нLP				50.8\%		
Family history				2.5\%		
Cardiac pathology ((one / mild / severe)				72\%/ $22 \% / 6 \%$		
* $A=$ Arabic, $A F=$ African, $C=$ Caucasian, $T=$ Turkish Intervals of 12-lead ECG vs. 5L3DVCG-Al-derived ECG (II, V2)						
	n	$\begin{aligned} & \text { ECG } \\ & {[\text { [mean } \pm \text { SD] }} \end{aligned}$	$\begin{aligned} & \text { 5L3DVCG-AI } \\ & {[\text { mean } \pm \text { SD] }} \end{aligned}$	Pearsons r	Bias (95\% LoA)	
HF	209	72 ± 15	78 ± 15	0.80 ***	-5.7 (-23.9-12.5)	
P	202	108 ± 13	105 ± 12	0.45 ***	3.2 (-22.4-28.8)	
PQ	211	158 ± 24	159 ± 24	$0.75{ }^{\text {*** }}$	-1.0 (-33.3-31.3)	
QRS	226	98 ± 14	95 ± 19	0.59 ***	$2.2(-28.4-32.8)$	
QT	224	398 ± 36	372 ± 36	$0.76{ }^{\text {*** }}$	25.9 (-20.9-72.6)	
QTcB	209	431 ± 28	418 ± 33	0.65 ***	$12.5(-38.6-63.5)$	
QTcF	209	419 ± 23	402 ± 30	0.70 ***	17.8(-24.4-60.0)	

Comparison of intervals of 12-lead ECG with 5L3DVCG-AI-derived ECG

Intra-day comparison of heart axis in supine position (12-lead ECG) and sitting position (5L3DVCG-AI)

	ECG (supine)					
		$\underset{\left(<-30^{\circ}\right)}{\operatorname{LAD}}$	$\stackrel{\text { LT }}{\left(-30^{\circ}-30^{\circ}\right)}$	$\begin{gathered} \text { IT + ST } \\ \left(30^{\circ}-90^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { RT + RAD } \\ \left(90^{\circ}->120^{\circ}\right) \end{gathered}$	Σ
	LAD	10	12	1	1	24
	LT	2	39	4	0	45
	IT + ST	1	40	97	2	140
	RT + RAD	0	4	5	0	9
	Σ	13	95	107	3	218

Spearman correlation: 0.553; $p<0.001$
Deviations between methods possibly attributable from difference in body position (supine vs. sitting).

Conclusions

5L3DVCG-AI-derived ECG showed high correlation and low bias compared to standard 12-lead ECG.
Easy to use 5-lead ECG may replace 12-lead ECG without major training or expertise.
Shorter intervals to be considered when interpreting 5L12L-ECG and "norma values in the ongoing prospective large-scale performance clinical trials 5L3DVCG-AI identifies persons at risk for CVD (s. abstract 15181, PSu3119)

